ACRYLIC ACID - STABILIZED

Revision: 22.09.2020 Page 1 of 3

Non-saturated organic acid used for polymer manufacturing and as a raw material for syntheses.

For further information regarding this product please refer to:

Monomers Sales Synthomer

eMail: monomers@synthomer.com

Molar Mass(g/mol): 72.06 Chemical formula:

Stoichiometric formula: C₃H₄O CAS number: 79-10-7

Property	Typical Value	Unit	Method ¹
Appearance	Clear, colorless liquid	-	Visually
Acrylic acid (including dimer)*	min. 99.5	%	
Acrylic acid (without dimer)	min. 99.0	%	
Acrolein	max. 0.002	%	
Furfuraldehyde	max. 0.035	%	
Benzaldehyde	max. 0.015	%	
Acetic acid	max. 0.1	%	
Propionic acid	max. 0.07	%	
Acrylic acid dimer * on dispatch date	max. 0.5	%	
Color	max. 10	APHA	ASTM D 1209
Water	max. 0.1	%	ASTM E 1064
Inhibitor (MEHQ) **	0.018 - 0.022	%	ASTM D 3125
Refractive index ***	1.420 – 1.423	-	DIN 51 423/ASTM D 1218

¹ internal method based upon the specified norm

Application Advice

There are two reaction centers in acrylic acid molecule for possible reactions – the double bond and the carboxylic group. It readily undergoes polymerization and addition reactions on the unsaturated group. And it reacts on the carboxylic group forming esters, amides

Copolymers can be produced with acrylic esters, methacrylates, styrene, acrylonitrile, vinyl acetate, vinyl chloride, butadiene, ethylene etc. Homopolymers and polar copolymers are frequently soluble in water. They can be used in the form of acid or salts in many

Disclaimer: This information or data and any other advice or recommendations given or made by us (collectively "Information") are not intended to, nor do they, constitute professional advice or services. Information is provided "AS IS" and on an "AS AVAILABLE" basis and without warranty. We do not warrant or accept responsibility for the accuracy, timeliness or completeness of the Information or data or its suitability of a particular purpose. Synthomer makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Synthomer disclaims (i) any and all liability arising out of the application or use of any product (including as to infringement of third party intellectual property rights), (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability. Any Information concerning any possible use or application of Synthomer products is given by us in good faith and it is entirely for you to satisfy yourself fully as to the suitability of Synthomer products for any particular purpose. Synthomer products are sold in accordance with Synthomer's standard terms and conditions of sale which are available from www.synthomer.com/tc.

^{*} The content of dimer in acrylic acid does not depend on the amount of added inhibitor but it is a function of the storage temperature and time. The content of dimer rises continually depending on the storage temperature. The increase ranges from 0.1 wt% at 15°C to 0.4 wt% at 25 °C per month.

^{**} The inhibitor content can be increased above the standard limit as per customer's request.

^{***} nD20

ACRYLIC ACID - STABILIZED

Revision: 22.09.2020 Page 2 of 3

applications, such as thickeners, dispersing agents, flocculants, wetting agents, superabsorbents etc. Water or solvent dispersion of polymers are used in coatings, adhesives, textile or paper industry etc. Acrylic acid is a very important raw material for manufacturing of many propionic acid derivatives or specialty monomers used in a great variety of chemical processes and technologies.

Parameter	Value, Unit	
Appearance, form	Transparent, colorless, clear liquid above 13 °C	
Odor	Characteristic, pungent, acrid	
Boiling point	141 °C	
Melting point	13 °C	
Vapour pressure at 20 °C	0.38 kPa	
Vapour pressure at 40 °C	1.35 kPa	
Vapour pressure at 60 °C	4.0 kPa	
Vapour pressure at 100 °C	23.8 kPa	
Vapour pressure at 120 °C	50.0 kPa	
Flash point (Albert-Pensky)	48 °C	
Explosion limit – upper at 47.5 °C	15.9 % v/v (at 101.3 kPa)	
Explosion limit – lower at 88.5 °C	2.4 % v/v (at 101.3 kPa)	
Autoignition temperature	438 °C	
Heat of evaporation at boiling point	634 kJ / kg	
Heat of polymerization	1075 kJ / kg	
Heat of combustion	19080 kJ / kg	
Heat of neutralization	805 kJ / kg	
Specific heat of liquid at 20 °C	2.05 kJ / kg.K	
Density of liquid at 20 °C	1050 kg / m3	
Vapour density (air=1)	> 2.5	
Dissociation constant at 25 °C	5.74 × 10-5	
Refractive index at 20 °C	1.418 – 1.422	
Viscosity at 20 °C	1.15 mPa.s	
Solubility acid in water	soluble in all proportions	
Solubility in organic solvents	soluble in all proportions (in most solvents)	
Electrical conductivity	4.4 × 104 pS / m	

Shipping and Storage

Acrylic acid is transported in specially equipped railway cars or tanker trucks. Transport containers are filled to a maximum of 94 % of their capacity.

In order to prevent spontaneous polymerization, acrylic acid must always be stored under air, never under inert gases. The air (oxygen) presence is required for proper functionality of the stabilizer. Product storage temperature must be between 15 and 25 °C.

Under these conditions, a storage stability of one year can be expected. It is advisable to minimize the likelihood of acrylic acid overstorage by a strict observance of the "first-in-first-out" storage principle. For storage periods extended over 4 weeks, it is advisable to replenish the dissolved oxygen content in the product by suitable aeration.

Dimer of acrylic acid is formed during storage and this process is inevitable and cannot be prevented. The dimer formation is promoted solely by higher storage temperature and storage period. The contained dimer of acrylic acid could affect acrylic acid reactivity and performance in some processes.

It is necessary to prevent freezing of acrylic acid, therefore the acrylic acid temperature should never drop under 15 °C. Unsuitable thawing of solidified acrylic could lead to a spontaneous and dangerous polymerization accompanied by a massive heat release or even an explosion. Do not thaw frozen acrylic acid without consultation and approval from your supplier.

Disclaimer: This information or data and any other advice or recommendations given or made by us (collectively "Information") are not intended to, nor do they, constitute professional advice or services. Information is provided "AS IS" and on an "AS AVAILABLE" basis and without warranty. We do not warrant or accept responsibility for the accuracy, timeliness or completeness of the Information or data or its suitability of a particular purpose. Synthomer makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Synthomer disclaims (i) any and all liability arising out of the application or use of any product (including as to infringement of third party intellectual property rights), (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability. Any Information concerning any possible use or application of Synthomer products is given by us in good faith and it is entirely for you to satisfy yourself fully as to the suitability of Synthomer products for any particular purpose. Synthomer products are sold in accordance with Synthomer's standard terms and conditions of sale which are available from www.synthomer.com/tc.

Revision: 22.09.2020 Page 3 of 3

Under no circumstances should steam be used to heat or thaw acrylic acid.

Stainless steel is the recommended material for storage tanks and piping. Avoid contamination with alloys containing copper or silver. All metal made equipment (tanks, pumps, piping etc.) must be earthed. All national laws and directives, as well as local regulations governing storage, handling, distribution and disposal of flammable liquids must be strictly observed. Avoid exposure to high temperatures, sparks, flame, light and frost. Keep separated from oxidizing materials. Keep the container tightly closed.

For additional detailed information see the brochure "SAFE HANDLING AND STORAGE OF ACRYLIC ACID", issued by the European Basic Acrylic Monomers Manufacturers Association (EBAM).

Product Safety

Please refer to the Safety Data Sheet for safety information.